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 Ph.D.in EECS, University of California, Berkeley, 2006
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Experiences

« 2009-Present: Professor, Department of Electrical and Computer Engineering, Seoul
National University

o 2007-2009: Assistant Professor, University of California, Merced, CA

« 2007-2007: Postdoctoral Researcher, EECS, University of California, Berkeley, CA

o 1998-2000: Senior Software Engineer, Synopsys Inc., Mountain View, CA

o 1996-1998: Microprocessor Design Engineer, Intel Corporation, Santa Clara, CA

Research Interests
 Robotics

o Computer vision
e Machine learning

Robot Learning

 Robot learning is practical machine learning methods which are applied to
physical systems, such as robots.

* Inrobot learning, the difficulties lie in the study of influence of robot action on
the environment and learning with sensory values which has causal
relationship with robot’s action.

 Robot learning can be considered as a new machine learning technology to
overcome the difficulties in applying machine learning to physical systems.

« Development of robot learning technology for autonomous robots
- Safety-guaranteed machine learning
- Social-friendly interaction learning for robotics
- Sustainable machine learning

e« Main applications
- Service robots
- Autonomous driving for unmanned vehicles
- Vision for robots
- Dexterous manipulation
- Intelligent industrial robots

Research @ RLLAB

« To enhance intelligence in robotics
- Robot learning
- Computer vision
- Socially-acceptable robots
- Theory and new applications

Deep Reinforcement Learning

Robot Learning Laboratory, SNU

Deep Learning
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Deep Virtual Networks
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Deep Elastic Networks

Situation Understanding

Pedestrian Intention Detection
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Multiple-Category Object Detection with Determinantal Point Processes

3D Shape & Action Reconstruction

Safety-Aware Control

o 7
A 2% &
k-1
1 \ pik-1) Vik

555555555

Target tracking under uncertainty in prediction

Control under

Interaction Multi-modal Selection STL constraints
:... ? - i n ‘i n :__: .

o - = »% m

? o 8 0
@ a - a

* Joint predictionto |+ Predict all plausible |+ Get rid of invalid * Compute control
capture interaction futures for the predictions under STL constraints
between vehicles current driving {Narrow down

situations range of predictions)
4 - 4 -
Prediction Control

Predlcted degree of satlsfactlon for rules

—* The first 3D reconstructor —

[ The n,-th 3D reconstructor —|

The weight estimator
—l w

L. H{F[H{%ﬂ_
1024 1024 1024 1024 1024 nr

X

s

NG

& i

H

{%LH*HL

Final 3D shape Input 2048 2048 2048 2048 2048
Details of the j-th 3D reconstructor 2D points
,—l 1 ng-1 i = = g(xi)
> T cee—t —» D—»
a—— i 2 I «—| Rotation' N o |
32 32 l'f-l(x,) 3p 32 32 [‘;""1(Xi)3P 32 32 3p Refiner
1 1 3x3
Unsupervised losses Estimated Rotation 9
Rotation Estimator

Unsupervised 3D Reconstruction

Human Robot Interaction

Autonomous Driving Using Multi-Agent Joint Trajectory Prediction and Traffic Rule
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Understanding Human Context based on
the Cross-modal networks

RNN text encoder i RNN action decoder
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Generative autoregressive Networks for 3D

Dancing Move Synthesis from Music
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A chef is cooking a meal in the kitchen
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Synthesizing motion generation from text data
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